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Semiclassical linear functionals are characterized by the distributional equation
D(,L)+�L=0 where , and � are arbitrary polynomials with the condition
deg(�)�1. Two cases are considered:

(A) deg(,)>deg(�)

(B) deg(,)�deg(�).

In an earlier work by the authors (J. Comput. Appl. Math. 57 (1995), 239�249)
integral representations are given for semiclassical functionals in case (A). Here
the problem is continued and case (B) is solved: it is always possible to choose
some path # in the complex plane such that every solution, regular or not, of
D(,L)+�L=0 can be represented in the form (L, p) =�# w(z) p(z) dz where w(z)
is a solution of the differential equation (,w)$+�w=0. In some cases, the expres-
sion for L is a singular integral and a regularization process is given. � 1998

Academic Press

1. INTRODUCTION

The first authors to study semiclassical orthogonal polynomials were
E. N. Laguerre [8] and J. Shohat [18]. Recently, a unified theory of these
polynomials has been developed by P. Maroni in [11, 13, 14], where the
distributional equation defines the moment functional associated with the
semiclassical orthogonal polynomials. This equation is the starting point in
this paper.
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Definition 1.1. A regular moment functional L is said to be semi-
classical if and only if there exist polynomials , and �, deg(�)�1 such that

D(,L)+�L=0. (1)

Given L, among the pairs (,, �) which satisfy (1) let s be the minimum
of max[deg(,)&2, deg(�)&1]. Then L is said to be of class s. (If s=0,
the regular solutions of (1) are the functionals corresponding to the classical
polynomials.)

As usual, (DL, p) =&(L, p$) and (,L, p) =(L, ,p).
As regards the problem of the integral representation, the classical case

was solved by J. L. Geronimus [4], by R. D. Morton and A. M. Krall
[16], and by M. E. H. Ismail et al. [7]. For s>0, examples have been
given in [2, 5, 6]; the whole class of semiclassical functionals which are
positive definite on the real line is given in [3]. A. P. Magnus in [9] solved
the problem for ``generic semiclassical'' orthogonal polynomials which
correspond to regular solutions of (1) in case (A) provided that the zeros
of the polynomial , are distinct. In [10], a solution for the problem in case
(A) without restrictions on , was given and the problem in case (B) was
started. We summarize these results:

Proposition 1.1. (a) If L is an (A)-functional and +n , n�0, its
moments, then there exist a positive integer N and positive constants C and
M such that

|+n |�CMn, n�N.

(b) If L is an (B)-functional, there exist a positive integer N and
positive constants C and M such that1

|+n |�CMnn !, n�N.

From (a), the Stieltjes function associated with an (A)-functional,
S(z)=&��

n=0 (+n �zn+1), is an analytic function in |z|>M and L can be
represented in the form

(L, p)=
1

2?i |
|z|=M*

p(z) w(z) dz, M*>M.

The form of S(z) is obtained from its differential equation (,S)$+�S=D,
where D(z) is a polynomial of degree s. This is a characteristic of the semi-
classical functionals (see [14]).
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For (B)-functionals, ,(x)=�s+1
k=0 akxk and �(x)=�s+1

k=0 bk xk with
bs+1{0 and, since Eq. (1) is equivalent to the fact that the moments +n of
L satisfy

&n :
s+1

k=0

ak +n+k&1+ :
s+1

k=0

bk +n+k=0, n=0, 1, ...,

the set of solutions is a linear space of dimension s+1. A basis of this space
will be called a Fundamental System of Solutions (FSS).

Let w(z) be a function and # a path in the complex plane such that

(,(z) w(z))$+�(z) w(z)=0, (2)

,(z) w(z) p(z)| #=0 for every polynomial p. (3)

The moment functional L defined by

(L, p)=|
#

p(z) w(z) dz (4)

is a solution of (1) because

(D(,L)+�L, p)=|
#

(&,(z) w(z) p$(z)+�(z) w(z) p(z)) dz

and, by integration by parts, this is the same as

&,(z) w(z) p(z)| #+|
#

((,(z) w(z))$+�(z) w(z)) p(z) dz=0

from-conditions (2) and (3). This technique was described by L. M. Milne-
Thomson in [15].

In [10] it has been proved that it is possible to find s+1 independent
solutions of (1), provided that ,=1 and � is an arbitrary polynomial of
degree �1, in the form (4) such that conditions (2) and (3) hold. Next, the
same will be proved for the general case (B).

2. INTEGRAL REPRESENTATION OF (B)-FUNCTIONALS

Since the problem in case ,=1 is solved in [10], here the polynomial
, is always considered to have some zero. After a linear change in the
variable (see [14, Proposition 6.2]) the type (B) equation may be written
in such a way that one of the roots is zero and the leading coefficient of
� is an appropriate number which simplifies calculations

109SEMICLASSICAL LINEAR FUNCTIONALS
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D(,L)+�L=0

,(z)=zr0+1 `
M

k=1

(z&ak)rk+1, deg(,)= :
M

k=0

(rk+1)=N+1�s+1. (5)

�(z)=(s&N+1) zs+1+ } } } .

If some rk>0, we suppose that r0>0. Of course, M may be zero. Solving
the differential equation of condition (2), (,w)$+�w=0, we obtain

w(z)=z:0 :
M

k=1

(z&ak):k exp(&zs&N+1 } } } )

_exp \A0

zr0
+ :

M

k=1

Ak

(z&ak)rk+ exp \Q(z)
R(z)+ , (6)

where Q(z) and R(z) are polynomials with deg Q(z)<deg R(z) and such
that, in the decomposition of Q(z)�R(z) in partial fractions, the exponent
of each term corresponding to the zero ak is less than rk .

We impose the following restrictions:

v , and � do not have any common zero. (With Proposition 3.2 in the
next section, the problem in the general case is solved.)

v If some ak is a simple zero, the corresponding exponent :k is such
that R:k>&1. (The other possibility will be considered in the next
section.)

In order to simplify notation, we finally suppose that Ak=&1, k=0, ..., M.
An appropriate rotation around each zero ak for the paths 1k, j , defined
below, can be choosen which enables one to solve the equation when
Ak{ &1.

Now we define the paths such that condition (3) holds.
For each zero ak , k=0, ..., M, which is a multiple zero and for

j=1, ..., rk , we define:

v ;k, j the rk -roots of the unity. We also consider arg(;k, rk+1)=2?.

v lk is a positive real number whose length will be defined later.

v #k, j is the segment from ak in the direction ;k, j and length lk .

v Ck, j is the arc of the circumference of radius lk , centered on ak ,
which extends from arg(;k, j) until arg(;k, j+1).

For each k, we define the length lk to be small enough for the arcs Ck, j of
different zeros not to have any point in common.

110 MARCELLA� N AND ROCHA
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The paths from a0=0 to ak , k=1, ..., M :

v Ek is any simple curve beginning at the origin and extending in some
direction dk such that, when z # dk , limz � 0 exp(&1�zr0)=0, arriving at ak

in direction ;k, 1 when ak is a multiple zero or in any direction when ak is
a simple zero, and in such a way that, avoiding points aj , j{k, two dif-
ferent Ek have only the origin in common.

Finally, for m=1, ..., s&N+1, the paths joining zero and infinity:

v ;m are the s&N+1-roots of the unity.

v l*0 is a positive real number such that every path #k, j and Ek is
inside the disk centered on the origin and with radius l*0 .

v R0 is an arc joining 0 and l*0 along the real line and avoiding points
ak if any of them is a positive real number.

v Cm is the arc of the circumference centered on the origin and radius
l*0 such that it goes from zero argument to the argument of ;m .

v Rm is the line in the direction of ;m corresponding to l*0 �|z|<�.

Then, let

1m=R0 _ Cm _ Rm , m=1, ..., s&N+1,

1k, j=#k, j _ Ck, j _ (&#k, j+1), j=1, ..., rk , k=0, ..., M,

(see Fig. 1) and the corresponding functionals

(Lm , p) =|
1m

p(z) w(z) dz, m=1, ..., s&N+1 (7)

(Lk, j , p) =|
1k, j

p(z) w(z) dz,

j=1, ..., rk for each k such that rk>0, (8)

(L*k , p) =|
Ek

p(z) w(z) dz, k=1, ..., M. (9)

Thus we have s&N+1+r0+ } } } +rM+M=s+1 solutions of Eq. (5).

Theorem 2.1. [L1 , ..., Ls&N+1 , L0, 1 , ..., L0, r0
, ..., LM, 1 , ..., LM, rM

,
L*1 , ..., L*M ] is an FSS of Eq. (5).

We have to prove that they are independent functionals and we begin
the proof with two auxiliary results. The first one is straightforward.

111SEMICLASSICAL LINEAR FUNCTIONALS
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FIGURE 1

Lemma 2.1. Let D(,L)+�L=0 be a type (B) equation of class s. A set
of solutions [L1 , ..., Ls+1] is an FSS if and only if

det((Li , (x&a)n) ) s+1, s
i=1, n=0{0

for any complex number a.

The following lemma is a kind of Theorem of Final-value for the Laplace
transform (see [19, p. 249]).

Lemma 2.2. Let q(x)=&xn+�n
k=1 bk xn&k where bk # C. Let f (x) be a

locally integrable bounded function in [0, �). Let H(:) be the function

H(:)=|
�

0
x: exp(q(x)) dx, R(:)>&1

and, for every fixed :, let F(t) be the function

F(t)=|
�

0
x: exp(q(tx)) f (x) dx, t>0.

If limx � � f (x)=A then limt � 0+ t:+1F(t)=AH(:).

Proof.

H(:)=|
�

0
x: exp(q(x)) dx=|

�

0
(tx): exp(q(tx)) t dx, t>0.
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For a given =>0, let T be such that | f (x)&A|<= for x>T. Then

|t:+1F(t)&AH(:)|= } t:+1 |
�

0
x: exp(q(tx))( f (x)&A) dx }

�|t:+1| |
T

0
|x: exp(q(tx))| | f (x)&A| dx

+= |
�

T
|x: exp(q(tx)) t:+1| dx

�|t:+1| TM+= |
�

0
|x: exp(q(x))| dx,

where M is an upper bound of the function |x: exp(q(tx))| | f (x)&A| for
x # [0, T] and t # [0, t0] for some fixed t0 . Hence

lim
t � 0+

|t:+1F(t)&AH(:)|�= |
�

0
|x: exp(q(x))| dx

and limt � 0+ t:+1F(t)=AH(:) follows. K

Proof of the Theorem. (I) First, we consider the particular case

D(xL)+((s+1) xs+1+ } } } ) L=0.

The only paths now are from zero to infinity, so we simplify notation

(Lj , p)=|
#j

p(z) w(z) dz, j=1, ..., s+1,

where

#j#;j x, 0�x<�, ; s+1
j =1, and

w(z)=z: exp(&zs+1+q(z)), deg q�s.

If �s+1
j=1 *jLj=0 then

� :
s+1

j=1

*jLj , zn(s+1)+k�=0; k=0, ..., s; n=0, 1, ... . (10)

113SEMICLASSICAL LINEAR FUNCTIONALS
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Since

(Lj , zn(s+1)+k)

=|
�

0
xn(s+1)+k+:;:+k+1

j exp(&xs+1+q(;jx)) dx

=
1

s+1 |
�

0
exp(&t) tn+(k+:&s)�(s+1);:+k+1

j exp(q(;j t1�(s+1))) dt,

for each fixed k, (10) becomes

0=
1

s+1 |
�

0
exp(&t) tn+(k+:&s)�(s+1) :

s+1

j=1

* j;:+k+1
j exp(q(; jt1�(s+1))) dt

=
1

s+1
(&1)n F (n)

k (1), n=0, 1, ...,

where Fk( y) is the Laplace transform of

t (k+:&s)�(s+1) :
s+1

j=1

* j;:+k+1
j exp(q(;j t1�(s+1))).

As a consequence Fk( y)=0 and

:
s+1

j=1

*j ;:+k+1
j exp(q(;jt1�(s+1)))=0, k=0, ..., s

follows. Since det(;:+k+1
j ) s+1, s

j=1, k=0{0, we have

*j exp(q(;j t1�(s+1)))=0, j=1, ..., s+1

from which *j=0, j=1, ..., s+1, and [L1 , ..., Ls+1] is an FSS.

(II) General case. Now we write w(z)=z:0 >M
k=1 (z&ak):k_

exp(q(z)) f (z) and suppose

:
s&N+1

m=1

*mLm+ :
M

k=0

:
rk

j=1

*k, jLk, j+ :
M

k=1

*k*Lk*=0. (11)

114 MARCELLA� N AND ROCHA



File: DISTL2 319009 . By:CV . Date:26:06:98 . Time:13:35 LOP8M. V8.B. Page 01:01
Codes: 2540 Signs: 816 . Length: 45 pic 0 pts, 190 mm

Then

:
s&N+1

m=1

*m |
Rm

w(z) p(z) dz

=& :
M

k=0

:
rk

j=1

*k, j |
1k, j

p(z) w(z) dz& :
M

k=1

*k* |
Ek

p(z) w(z) dz

& :
s&N+1

m=1

*m |
R0 _ Cm

p(z) w(z) dz for every polynomial p(z).

(12)

Let + be a positive integer such that R(:0+ } } } +:k++)>&1, let

Fp(t)= :
s&N+1

m=1

*m |
Rm

z p+:0++ `
M

k=1

(z&ak):k exp(q(tz)) f (z) dz

= :
s&N+1

m=1

*m |
Rm

z p+:0+ } } } +:M++

_ `
m

k=1
\1&

ak

z +
:k

exp(q(tz)) f (z) dz, p=0, ..., s&N,

and

Gp(t)=& :
M

k=0

:
rk

j=1

*k, j |
1k, j

z p+:0++ `
M

k=1

(z&ak):k exp(q(tz)) f (z) dz

& :
M

k=1

*k* |
Ek

z p+:0++ `
M

k=1

(z&ak):k exp(q(tz)) f (z) dz

& :
s&N+1

m=1

*m |
R0 _ Cm

z p+:0++ `
M

k=1

(z&ak):k exp(q(tz)) f (z) dz,

p=0, ..., s&N.

Fp(t) is an analytic function in R(ts&N+1)>0 and so is Gp(t) in the whole
complex plane. From (12), F (n)

p (1)=G (n)
p (1), n=0, 1, ... and Fp(t)=Gp(t),

t # R(ts&N+1)>0, follows for p=0, ..., s&N. As a consequence

lim
t � 0+

t:0+ } } } +:M+++ p+1Fp(t)

= lim
t � 0+

t:0+ } } } +:M+++ p+1Gp(t)=0, p=0, ..., s&N.

115SEMICLASSICAL LINEAR FUNCTIONALS
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Moreover,

Fp(t)= :
s&N+1

m=1

*m |
�

l 0
*

(;mx) p+:0+ } } } +:M++

_ `
M

k=1 \1&
ak

;mx+
:k

exp(q(t;mx)) f (;mx) ;m dx

= :
s&N+1

m=1

*m |
�

0
(;mx) p+:0+ } } } +:M++

_ `
M

k=1
\1&

ak

;mx+
:k

exp(q(t;mx)) f (;mx) ;m/[l0
*, �](x) dx,

where /[l0
*, �)(x)=1 when x # [l 0* , �) and zero otherwise.

Since exp(;mx)=exp(&xs&N+1+ } } } ), we can apply Lemma 2.2 to
each term in the expression of Fp(t) and obtain

0= lim
t � 0+

t:0+ } } } +:M+++ p+1Fp(t)

= :
s&N+1

m=1

*m;:0+ } } } +:M+++ p+1
m |

�

0
x:0+ } } } +:M+++ p exp(q(;mx)) dx

for p=0, ..., s&N, because limx � � >M
k=1 (1&(ak �;mx)):k f (;m x)=1,

m=1, ..., s&N+1. This system is the same as

0= :
s&N+1

m=1

*m |
$m

z:0+ } } } +:M+++ p exp(q(z)) dz, p=0, ..., s&N,

where $m is the line z=;mx, 0�x<�, and its determinant may be
written in the form

det((L� m , z p) )s&N+1, s&N
m=1, p=0 ,

where [L� 1 , ..., L� s&N+1] is an FSS for

D(xL)&(xq$(x)+:+1) L=0, :=:0+ } } } +:M++,

as was proved for the particular case of part (I). Taking into account
Lemma 2.1, this determinant is non-zero and *m=0, m=1, ..., s&N+1
follows.

Equation (11) becomes

:
M

k=0

:
rk

j=1

*k, j Lk, j+ :
M

k=1

*k*Lk*=0. (13)

116 MARCELLA� N AND ROCHA



File: DISTL2 319011 . By:CV . Date:26:06:98 . Time:13:35 LOP8M. V8.B. Page 01:01
Codes: 3085 Signs: 1018 . Length: 45 pic 0 pts, 190 mm

Suppose that some ak , and therefore a0 (=0) is a multiple zero; otherwise
there is nothing to prove with respect to *k, j . It will be proved that
*0, j=0, j=1, ..., r0 .

From (13) it follows that

� :
r0

j=1

*0, j L0, j , znr0+ p�+� :
k{0

:
rk

j=1

*k, j Lk, j , znr0+ p�
+� :

M

j=1

*k*Lk* , znr0+ p�=0, p=0, ..., r0&1, n=0, 1, ... . (14)

Now we write w(z)=z:0 exp(&1�zr0 ) g(z). Since ;0, 1 , ..., ;0, r0
, are the

r0 -roots of the unity, we have

� :
r0

j=1

*0, jL0, j , znr0+ p�
= :

r0

j=1

*0, j |
10, j

znr0+ p+:0 exp \&1
zr0 + g(z) dz

=|
10, 1

znr0+ p+:0 exp \&1
t + :

r0

j=1

*0, j; p+:0+1
0, j g(z;0, j) dz

and, letting zr0 =t, the above equation reduces to

1
r0

|
1

tn exp \&1
t + t( p+:0+1&r0)�r0 :

r0

j=1

*0, j ;:0+ p+1
0, j g(t1�r0 ;0, j) dt,

where 1 is the path in Fig. 2. On the other hand, after making the substitu-
tion zr0 =t, we also have

� :
k{0

:
rk

j=1

*k, jLk, j , znr0+ p�
=

1
r0

:
k{0

:
rk

j=1

*k, j |
1� k, j

tn exp \&1
t + t ( p+:0&r0+1)�r0 g(t1�r0 ) dt,

p=0, ..., r0&1, n=0, 1, ...,

where 1� k, j is a curve in the region |t|>l r0
0 . Furthermore

� :
M

k=1

*k*Lk* , znr0+ p�
=

1
r0

:
M

k=1

*k* |
E� k

t n exp \&1
t + t ( p+:0&r0+1)�r0 g(t1�r0 ) dt,

p=0, ..., r0&1, n=0, 1, ...,
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FIGURE 2

where E� k is a curve such that its part near zero is in the region R(t)>0,
and the corresponding integral converges.

Hence, from (14) it follows that

|
1

1
t&`

exp \&1
t + t ( p+:&r0+1)�r0 :

r0

j=1

*0, j ;:0+ p+1
0, j g(t1�r0;0, j) dt

+ :
k{0

:
rk

j=1

*k, j |
1� k, j

1
t&`

exp \&1
t + t ( p+:0&r0+1)�r0 g(t1�r0) dt

+ :
M

k=1

*k* |
E� k

1
t&`

exp \&1
t + t ( p+:0&r0+1)�r0 g(t1�r0) dt=0

for ` such that |`| is large enough and for each p=0, ..., r0&1. With p fixed
and denoting each term in the last expression in H1(`), H2(`), and H3(`),
it becomes

H1(`)+H2(`)+H3(`)=0 for |`| sufficiently large.

For =>0, if we use H1, =(`) to refer to the integral of the function which
defines H1(`) but now over the path 1= of Fig. 3, we have H1(`)=H1, =(`)
when |`|>l r0

0 , whence

H1, =(`)+H2(`)+H3(`)=0

for |`|>= and ` outside the curves 1� k, j and E� k .
Let C be the curve in Fig. 4 and let ` be a point such that =<|`|<l r0

0

and ` � (=, l r0
0 ). By Cauchy's theorem we have

FIGURE 3
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FIGURE 4

2?i exp \&1
` + `( p+:0&r0+1)�r0 :

r0

j=1

*0, j ;:0+ p+1
0, j g(`1�r0;0, j)

=|
C

1
t&`

exp \&1
t + t ( p+:0&r0+1)�r0 :

r0

j=1

*0, j ;:0+ p+1
0, j g(t1�r0;0, j) dt

=H1(`)&H1, =(`)=H1(`)+H2(`)+H3(`). (15)

Let ` be a point in (&1
2 , 0). Then |t&`|�t when t # [0, l r0

0 ], and |t&`|� 1
2

when t lies in |t|=l r0
0 . Therefore H1(`) is a bounded function when

` # (&1
2 , 0). Moreover, H2(`) and H3(`) are bounded too in the same

region. As a consequence, equality (15) only holds when

:
r0

j=1

*0, j ;:0+ p+1
0, j g(`1�r0;0, j)=0, p=0, ..., r0&1

from which *0, j=0, j=1, ..., r0 .
It is clear that the preceding work can be carried over to any multiple

zero ak by a change z&ak=t. Hence *k, j=0, j=1, ..., rk , for every k such
that ak is a multiple zero. It remains to be proved that *k*=0 for
k=1, ..., M.

� :
M

k=1

*k*Lk*, p�= :
M

k=1

*k* |
Ek

w(z) p(z) dz=|
X

w(z) :
M

k=1

*k*/Ek
(z) p(z) dz,

where X=�M
k=1 Ek , and /Ek

(z)=1 when z # Ek and zero otherwise. It is
clear that this is a bounded functional over the space of continuous func-
tions on X and, since the complement of X is connected and its interior is
empty, by Merguelian's theorem, there exists only one extension of the
functional over the continuous functions on X. Then, if

� :
M

k=1

*k*Lk*, p�=0, for every polynomial p,
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it is zero on the continuous functions. Hence, from Riesz Representation
Theorem, this functional may be represented in a unique form and it
follows that

w(z) :
M

k=1

*k*/Ek
(z)=0

for every z where this is a continuous function. Then *k*=0 for k=1, ..., M.

3. REGULARIZATION

When R(:k)�&1 for some simple zero ak , the corresponding integrals
are not convergent and a regularization is needed. It will be done
recurrently over the integer part of R(:k).

Given the equation D(,L)+�L=0, if a is a zero of , we denote

,(x)=(x&a) ,a(x), �(x)=(x&a) �a(x)+�(a),

and, using Maroni's techniques, we consider

( (x&a)&1 L, p)=�L,
p(x)& p(a)

x&a � .

Proposition 3.1. Let a be one zero of , such that �(a){0. If
[L1 , ..., Ls+1] is an FSS of the equation of class s and type (B)

D(,L)+(�&,a) L=0,

then

[(x&a)&1 L1+M1 $(x&a), ..., (x&a)&1 Ls+1+Ms+1 $(x&a)],

where Mj=&(Lj , �a)��(a), is an FSS of D(,L)+�L=0.

Proof. Let L j*=(x&a)&1 Lj+M j $(x&a), then Lj=(x&a) L j*.
Furthermore

D((x&a)2 ,a L j*)=D((x&a) ,a Lj)=&(�&,a) Lj

and thus

D((x&a)2 ,aL j*)+(x&a)(�&,a) L j*=0.
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Taking the derivative, we obtain (x&a)(D(,L j*)+�L j*)=0, which means
that

D(,L j*)+�L j*=(L j*, �) $(x&a).

Moreover

(L j*, �)=�Lj ,
�(x)&�(a)

x&a �+Mj($(x&a), �)

=(L j , �a) +Mj�(a)=0

from the definition of Mj , and it follows that D(,Lj*)+�L j*=0.
On the other hand

}
(L1*, 1) ,

(L1*, x&a) ,
b

(L1*, (x&a)s) ,

}
}
b
}

, (L*s+1 , 1)
, (L*s+1 , x&a)

b
, (L*s+1 , (x&a)s) }

= }
M1 ,

(L1 , 1) ,
b

(L1 , (x&a)s&1) ,

}
}
b
}

, Ms+1

, (Ls+1 , 1)
b

, (Ls+1 , (x&a)s&1) }
=&

K
�(a) }

(L1 , (x&a)s) ,
(L1 , 1) ,

b
(L1 , (x&a)s&1) ,

}
}
b
}

, (Ls+1 , (x&a)s)
, (Ls+1 , 1)

b
, (Ls+1 , (x&a)s&1) } ,

where K is the coefficient of degree s+1 of � which is non-zero because the
equation is of type (B). The last identity holds because the remaining terms
in the first row are a linear combination of the others. By hypothesis
[L1 , ..., Ls+1] is an FSS and, from Lemma 2.1, the last determinant is non-
zero. This means that [L1* , ..., L*s+1] is an FSS of D(,L)+�L=0. Let us
now explain the recursive process.

Suppose initially that only one :k corresponding to a simple zero ak

has R(:k)�&1 and that :k{&1, &2, ... . If &2<R(:k)�&1, equation
D(,L)+(�&,ak

) L=0 is covered by Theorem 2.1 because

w$(z)
w(z)

=&
�(z)&,ak(z)+,$(z)

,(z)
=&

�(z)+,$(z)
,(z)

+
1

z&ak
.
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By applying Proposition 3.1 we obtain the solution for D(,L)+�L=0. In
order to apply Proposition 3.1 we need �(ak){0, but this is equivalent to
the condition :k{&1 because ak is a simple zero. By repeating the above
process as many times as required by the integer part of R(:k), we have the
solution for case R(:k)�&1 provided that :k{&1, &2, ... .

Let us now solve case :k=&1, the solution of which can be extended
with Proposition 3.1 to obtain the solution for :k=&2, &3, ... .

Proposition 3.2. Given the equation D(,L)+�L=0, suppose that, for
some zero a of ,, �(a)=0. Let [L1 , ..., Ls] be an FSS of the equation of
class s&1, D(,aL)+�a L=0. Then

[$(x&a), (x&a)&1 L1 , ..., (x&a)&1 Ls]

is an FSS of D(,L)+�L=0.

Proof. It is straightforward to show that $(x&a) is a solution. Let
Lj*=(x&a)&1 L j . Then Lj=(x&a) L j*, and it follows that

D((x&a) ,aL j*)=D(,aLj)=&�aLj=&(x&a) �aL j*=&�L j*.

Moreover

}
($(x&a), 1) ,

(L1*, 1) ,
b

(Ls*, 1) ,

}
}
b
}

($(x&a), (x&a)s)
(L1*, (x&a)s)

b
(L s*, (x&a)s) }

= }
1
0
b
0

0
(L1 , 1)

b
(Ls , 1)

}
}
b
}

0
(L1 , (x&a)s&1)

b
(Ls , (x&a)s&1) }

which is non-zero because [L1 , ..., Ls] is an FSS. Hence [$(x&a),
(x&a)&1 L1 , ..., (x&a)&1 Ls] is an FSS of D(,L)+�L=0.

The equation D(,aL)+�a L=0, when regularization is necessary for
only one zero, gives rise to two possibilities:

(1) The solution of the equation is covered by Theorem 2.1

(2) The equation reduces to DL+KL=0 where K{0 is a constant.
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The equation in case (2) yields

{K (L, 1) =0
&n (L, xn&1) +K (L, xn) =0, n�1,

and (L, xn)=0, n�0, so L=0.
Thus, the equation is solved when only one zero has its real part less

than or equal to &1. If there were more than one zero with the real part
less than or equal to &1, Propositions 3.1 and 3.2 could be used to reduce
this case to the previous case.

Example. We present an example of the regularization method for a
semiclassical functional of class s=N&1 which covers Laguerre func-
tionals (N=1), studied by Morton and Krall in [16], and an example of
Airy (N=3) and Freud functionals (N=4). Examples of Airy functionals
may be seen in [12] and for Freud ones see, for example, [1].

Let L be such that

D(xL)+(NxN&:&1) L=0.

One of the solutions is, for R:>&1,

(L(:), p) =|
�

0
x:e&x Np(x) dx.

Let us consider a real number = such that &1<=<0. Our aim is to obtain
the solution for :==&1, =&2, ..., =&n, ... . From Proposition 3.1, the
corresponding solution of

D(xL)+(NxN&(=&n)&1) L=0

can be written as

L(=&n)=x&1L(=&n+1)+Mn $,

where

Mn=
(L(=&n+1), NxN&1)

=+1&n
.

With the same notation and using induction we get

L(=&n)=x&nL(=)+ :
n

k=1

(&1)n&k

(n&k)!
Mk $(n&k), (16)
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where

(x&nL(=), p) =�L(=),
1
xn \ p(x)& :

n&1

j=0

p ( j)(0)
j !

x j+�
=|

�

0
x=&n e&x N { p(x)& :

n&1

j=0

p( j)(0)
j !

x j = dx

and the derivatives of $ appear in (6) because x&k$=((&1)k�k!) $(k). So,
we have to obtain Mk , k=1, ..., n.

Setting k=&N+ j, j=1, ..., N, &=1, 2, ..., we have

M&N+ j=
(L(=&&N& j+1), NxN&1)

=+1&(&N+ j)

=
N

=+1&(&N+ j)
(x&1L(=&&N& j+2)+M&N+ j $, xN&1)

=
N

=+1&(&N+ j)
(L(=&&N& j+N ), 1)

=
N

=+1&(&N+ j)
(x&1L(=&(&&1) N& j+1)+M(&&1) N+ j $, 1)

=
N

=+1&(&N+ j)
M(&&1) N+ j .

As a consequence, for j=1, ..., N and &=0, 1, ..., we have

M&N+ j=
N

=+1&(&N+ j)
N

=+1&((&&1) N+ j)
} } }

N
=+1& j

(L(=), xN& j)
(17)

because

Mj=
N

=+1& j
(L(=), xN& j) , j=1, ..., N.

Hence, letting M&N+ j=A&N+ j(L(=), xN& j) , and n=kN+r, r=1, ..., N,
expression (17) in (16) yields

(L(=&kN&r), p)

=(x&(kN+r)L (=), p) + :
k&1

&=0

:
N

j=1

A&N+ j p(k&&) N+r& j (0)
((k&&) N+r& j)!

(L(=), xN& j)

+ :
r

j=1

AkN+ j p(r& j)(0)
(r& j)!

(L(=), xN& j).
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Then

(L(=&kN&r), p)=|
�

0
x=&kN&re&x N { p(x)& :

kN+r&1

j=0

p( j)(0)
j !

x j

+ :
k&1

&=0

:
N

j=1

A&N+ j p(k&&) N+r& j (0)
((k&&) N+r& j)!

x(k+1) N+r& j

+ :
r

j=1

AkN+ j p (r& j)(0)
(r& j)!

x(k+1) N+r& j= dx

and the A&N+ j are defined by the recurrent relation

Aj=
N

=+1& j
, j=1, ..., N

A&N+ j=
N

=+1&(&N+ j)
A(&&1) N+ j , j=1, ..., N ; &=1, 2, ... K

In cases :=&1, &2, ..., the solutions have a different form. For :=&1,
D(xL)+NxNL=0, by Proposition 3.2 one must solve

DL+NxN&1L=0.

Any solution of this equation has the form

(L, p)= :
N&1

i=1

*i |
#i

p(z) e&z N dz,

where the #i are defined in Theorem 2.1. Therefore, by Proposition 3.2, any
solution L (&1)

N of D(xL)+NxNL=0 may be written as

(L (&1)
N , p)= :

N&1

i=1

*i |
#i

p(z)& p(0)
z

e&z N dz+*N p(0)

and the corresponding solutions for :=&2, &3, ... must be obtained with
Proposition 3.1 again. Letting

(L(&1)
N, i , p) =|

#i

p(z)& p(0)
z

e&zN dz, i=1, ..., N&1,

(L(&1)
N, N , p) =($, p) ,
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in the same way as before, for i=1, ..., N we have

(L(&1&kN&r)
N, i , p)=(x&(kN+r)L (&1)

N, i , p)

+ :
k&1

&=0

:
N

j=1

A&N+ j p(k&&) N+r& j (0)
((k&&) N+r& j)!

(L (&1)
N, i , xN& j)

+ :
r

j=1

AkN+ j p(r& j)(0)
(r& j)!

(L (&1)
N, i , xN& j) ,

where

Aj=&
N
j

, j=1, ..., N

A&N+ j=&
N

&N+ j
A(&&1) N+ j , j=1, ..., N ; &=1, 2, ... . K

Remark. Freud weights are explicitly related to this problem. In fact, the
associated linear functional is a B-functional. The distributional equation
allows us to obtain the nonlinear equations (the so-called Freud equations)
of the coefficients of the three-term recurrence relation of the corresponding
sequence of orthogonal polynomials. Furthermore, the solutions of such
equations are given in terms of Hankel determinants whose entries are the
moments (+k). They satisfy a linear recurrence relation as we pointed out
in the Introduction. In a private communication, A. P. Magnus announced
the connection between Freud equations and discrete Painleve� equations
when ,=1 and � is an odd polynomial.
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